Important Equations in Physics (A2)

Unit 1: Non-uniform Acceleration (Topic 7 and 14)

1	Base units		Length meters		Mass kilograms	Time secon	Temp kelvin(K)		Curren ampere		$\begin{aligned} & \text { inous } \\ & \text { nsity } \\ & \text { tela (C } \end{aligned}$		$\begin{aligned} & \text { unt of } \\ & \text { tance } \end{aligned}$
2	Multiples of units	$\begin{gathered} \text { Tera } \\ \mathbf{T} \\ 10^{12} \\ \hline \end{gathered}$	$\begin{gathered} \text { Giga } \\ \mathbf{G} \\ 10^{9} \\ \hline \end{gathered}$	$\begin{gathered} \text { Mega } \\ \mathbf{M} \\ 10^{6} \\ \hline \end{gathered}$	$\begin{gathered} \text { kilo } \\ \mathbf{k} \\ 10^{3} \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline \text { deci } \\ \mathbf{d} \\ 10^{-1} \\ \hline \end{array}$	$\begin{gathered} \text { centi } \\ \mathbf{c} \\ 10^{-2} \\ \hline \end{gathered}$	$\begin{gathered} \text { milli } \\ \mathbf{m} \\ 10^{-3} \\ \hline \end{gathered}$	$\begin{gathered} \text { micro } \\ \mu \\ 10^{-6} \end{gathered}$	$\begin{gathered} \text { nano } \\ \mathbf{n} \\ 10^{-9} \\ \hline \end{gathered}$	$\begin{gathered} \text { pico } \\ \mathbf{p} \\ 10^{-12} \\ \hline \end{gathered}$	$\begin{gathered} \text { femto } \\ \text { f } \\ 10^{-15} \\ \hline \end{gathered}$	$\begin{gathered} \text { atto } \\ \mathbf{a} \\ 10^{-18} \\ \hline \end{gathered}$
3	Radian: Angle subtended by an arc equal to the length of radius				$\theta=\frac{\text { length of arc }}{\text { radius of circle }}=\frac{\text { circumference of the circle }}{\text { radius }}=\frac{s}{r}$								
4	Radian and degree			$\begin{aligned} & 2 \pi \mathrm{rad} \\ & 1 \mathrm{rad} \end{aligned}$	$\begin{array}{r} 360^{\circ} \\ 57.3^{\circ} \\ \hline \end{array}$	$\text { radian }=\text { degree } \times \frac{\pi}{180^{\circ}}$				$\text { degree }=\operatorname{rad} \times \frac{180^{\circ}}{\pi}$			
5	Angular displacement, θ in radians			$\theta=\frac{s}{r}$					s is the arc length in meters r is the radius of a circle in meters				
6	Angular speed, ω in radians/seconds			$\omega=\frac{\Delta \theta}{\Delta t}$		$v=r \omega$			ω is called omega, is a vector, direction clockwise or anticlockwise				
7	Centripetal Force, F_{c}					$F_{c}=m r \omega^{2}$			unit newtons, N, always directed towards the centre of the circle of radius r				
8	Centripetal acceleration					$a_{c}=r \omega^{2}$			unit $\mathrm{m} / \mathrm{s}^{2}$ or rad $/ \mathrm{s}^{2}$ direction always towards the centre of the circle				
Oscillations													
9	Period \mathbf{T}			Time taken for one complete oscillation. Unit seconds									
10	Frequency f			Number of oscillations per second. Unit oscillations per second or hertz or Hz									
11	Displacement \boldsymbol{x}			The distance from the equilibrium position at any time t. Unit meters, vector qty									
12	Amplitude \boldsymbol{x}_{o}			The maximum displacement from the mean position. Unit meters, scalar qty									
13	Simple Harmonic Motion			a) motion about a fixed point, b) acceleration is proportional to displacement and directed towards a fixed point, c) direction of acceleration is opposite to displacement.									
14	Simple Harmonic Motion			$a=-\omega^{2} x$			a, acceleration; ω, angular frequency; x, displacement						
15	Angular frequency			$\omega=2 \pi f$			f is frequency of oscillations						
16	Restoring force, $F_{\text {res }}$			The resultant force acting on an oscillating particle that cause acceleration a.$F_{r e s}=-m \omega^{2} x$									
17	Simple harmonic motion Equations			$\begin{gathered} \text { at } t=0 \text { and } x=0 \\ x=x_{o} \sin \omega t \\ v=x_{o} \omega \cos \omega t \\ v_{o}=x_{o} \omega \\ v= \pm \omega \sqrt{\left(x_{o}^{2}-x^{2}\right)} \\ a=-x_{o} \omega^{2} \sin \omega t \\ E_{k}=\frac{1}{2} m \omega^{2}\left(x_{o}^{2}-x^{2}\right) \\ E_{p}=\frac{1}{2} m \omega^{2} x^{2} \\ \hline \end{gathered}$					at $t=0$ and $x=x_{o}$$\begin{gathered} x=x_{o} \cos \omega t \\ v=-x_{o} \omega \sin \omega t \\ v_{o}=x_{o} \omega \\ v= \pm \omega \sqrt{\left(x_{o}^{2}-x^{2}\right)} \\ a=-x_{o} \omega^{2} \cos \omega t \\ E_{k}=\frac{1}{2} m \omega^{2}\left(x_{o}^{2}-x^{2}\right) \\ E_{p}=\frac{1}{2} m \omega^{2} x^{2} \end{gathered}$				
18	Total energy for SHM			$E_{\text {tot }}=E_{k}+E_{p}=\frac{1}{2} m \omega^{2} x_{o}^{2}$									
19	Time period for Simple pendulum and mass on a helical spring			$\qquad T=2 \pi \sqrt{\frac{l}{g}}$ $T=2 \pi \sqrt{\frac{m}{k}}$ l l is the length of the pendulum m is the mass and k is the spring constant									
20	Free oscillations			When the only force acting on a particle is external restoring force.									
21	Damped oscillations			When frictional and resistive force reduce the amplitude (energy) of the oscillation									
22	Resonance			When driving freq. of the osc. is equal to natural frequency gives max amplitude									

Unit 2: Thermal Physics (Topic 11, 12, 13)

1	Mole: amount of substance, n	eg 1 mole carbon=12g, 1 mole of oxygen=16g, 1 mole of water $=18 \mathrm{~g}$	
2	Avogadro constant, N_{A}	Constant number of molecules or atoms in 1 mole $=6.023 \times 10^{23}$ particles	
3	Brownian motion	Random, jerky, haphazard, zigzag motion of molecules in liquid or gas	
4	Absolute Temperature, K	Temperature in kelvin scale $\quad T / K=\theta^{\circ} \mathrm{C}+273.15$	
5	Ideal gas equation	$p V=n R T \quad$$P=$ pressure, $V=$ volume, $T=$ temp in Kelvin, n number of moles, $R=$ universal gas constant per mole $=8.3 \mathrm{Jmole}$	
6	Ideal Gas	- gas that obeys ideal gas equation at all pressures, volumes, temperatures, - molecules do not exert forces on each other when collide, - the collision between the molecules is perfectly elastic	
7	Kinetic theory of ideal gas	- Matter is made of tiny particles called atoms or molecules, - These particles are in constant, random motion, - Particles collide with each other and collision is perfectly elastic, - Particles apply no force on each other when collide, - Motion of particles is greater in gas, less in liquid and least in solids, - Volume of particles in gas is negligible compare to the volume of gas.	
8	Ki	$p V=\frac{1}{3} N m\left\langle c^{2}\right\rangle \text { or } p=\frac{1}{3} \rho\left\langle c^{2}\right\rangle$ N is the total number of molecules, m is the mass of a molecule, p the pressure, V the volume of container, $\left\langle c^{2}\right\rangle$ the average of square of the velocities of molecules, $\frac{N m}{V}=\rho$, the density of gas.	
9	Other gas equations	$p V=N k T$ $R=$ universal gas constant $($ per mole $)=8.3 \mathrm{Jmole}^{-1} \mathrm{~K}^{-1}$ $R=\frac{N}{n} k$ $k=$ Boltzmann constant $($ per molecule $)=1.38 \times 10^{-23} \mathrm{JK}^{-1}$ $R=N_{A} k$ $\frac{N}{n}=N_{A}$, Avogadro no. 6.023×10^{23} molecules $/$ mole	
10	Average of $\left\langle E_{k}\right\rangle$ molecules	$\left\langle E_{k}\right\rangle=\frac{3}{2} k T$	in kelvin, k, the Boltzmann constant
11	Heat and temperature	Heat is a form of energy measured in joules	Temperature is the degree of hotness of an object measure in ${ }^{\circ} \mathrm{C}$ or K
12	Internal energy ΔU	In ideal gas, it is the sum of kinetic energies of all molecules	In real gas, it is the sum of kinetic and potential energies of all molecules
13	Law of	The increase in internal energy (ΔU) of a system is equal to the sum of heat energy added to the system and the work done on it. $\Delta U=Q+W$ Q is the heat energy and $W(=p \Delta V)$, is the work done on the system	
14	Thermal equilibrium	When all sections of a system are at same temperature	
15	Physical properties of matter when heated	- most materials expand upon heating, eg mercury in glass thermometer - resistance of metals increases when the temperature increases, eg thermocouple thermometer	
16	Thermocouple thermometer (junction between copper and iron wire)	a) wide range $\left(-200^{\circ} \mathrm{C}\right.$ to $\left.1500^{\circ} \mathrm{C}\right)$ b) can store data electronically c) small size easy to manage d) record very rapid change of temperature $e)$ can measure the temperature of small objects	
17	Specific heat capacity: ..amount of heat required to raised the temperature of unit mass of a substance to one degree	$\begin{aligned} & c=\frac{\Delta Q}{m \times \Delta \theta} \\ & c=\frac{P \times t}{m \times \Delta \theta} \end{aligned}$	c, the specific heat capacity, $\mathrm{Jkg}^{-10} \mathrm{C}^{-1}$ m, the mass of an object, kg $\Delta \theta$, the change in temperature, ${ }^{\circ} \mathrm{C}$ ΔQ, amount of heat energy, J P, the power of electrical heater, W t, ON time for electrical heater, s
18	Thermal capacity, C unit J ${ }^{\circ} \mathrm{C}$	$C=\frac{\Delta Q}{\Delta \theta} \quad$ or $\quad C=c \times m$..heat required to increase the temperature of a whole body
19	Specific latent heat: ..amount of heat require to change the state of unit mass of matter without increase of	..of fusion \rightarrow from solid to liquid unit J/kg $l_{f}=\frac{Q}{m}=\frac{P \times t}{m}$..of vaporization \rightarrow from liquid to gas $l_{v}=\frac{Q}{m}=\frac{P \times t}{m}$ unit J/kg
	temperature	Always $I_{v}>I_{f}$ for the same substance	

Unit 3: Force fields (topic from syllabus 8, 17, 18, 21, 22)

Gravitational field

1	Newton's law of gravitation	Every two objects attract each masses and inversely proport 2Gravitational force between two masses	$F_{G}=G \frac{m_{1} \times m_{2}}{r^{2}}$
3	Earth's Gravitational force on mass m	$m g=F=G \frac{M_{e} \times m}{R^{2}}$	

Electric field

8	Coulomb's law of electrostatic	$F_{E}=\frac{1}{4 \pi \epsilon_{o}} \frac{q_{1} \times q_{2}}{r^{2}}$ $1 / 4 \pi \epsilon_{o}=9 \times 10^{9} \mathrm{C}^{2} \mathrm{Nm}^{2}$	q_{1}, q_{2} charged objects in coulombs, r the distance between the charged objects ϵ_{o} the permittivity of free space $=8.85 \times 10^{-12} \mathrm{C}^{2} N^{1} \mathrm{~m}^{-2}$
9	Electric field intensity, E, due to charge Q	$E=\frac{F}{q}=\frac{1}{4 \pi \epsilon_{o}} \frac{Q}{r^{2}}$	- force on a unit charge q at any point around another charge Q - out from positive end to negative charge
10	Electric field intensity, E, between the two charged plates	$E=\frac{V}{d}$	V the potential difference between the plates d the distance between the plates E is uniform between the plates, unit is $V m^{-1}$
11	Electric potential, V	$V=\frac{Q}{4 \pi \epsilon_{o} r}$.work done in bringing the point charge from infinity to a point r in an electric field

Capacitance

12	Capacitance, C	$C=\frac{Q}{V}$	ratio of charge (Q) stored to potential diff.(V) between conductor, unit Farad, $m F$ and μF
13	Electric pot. energy stored in a capacitor	$E_{p}=\frac{1}{2} Q V=\frac{1}{2} C V^{2}=\frac{1}{2} \frac{Q^{2}}{C}$	- Capacitor is use to store charges or energy, - has two plates and insulator in between
14	Factors affecting capacitance	$C=\epsilon_{r} \epsilon_{o} \frac{A}{d}$	A the area of parallel plates, d the distance between them, ϵ_{o} permittivity of free space, ϵ_{r} relative permittivity of dielectric
15	Relative permittivity ϵ_{r}	Capacitance with dielectric divided by capacitance with vacuum, no units	
16	Capacitors connected in...	.. parallel $C=C_{1}+C_{2}$	series $\frac{1}{C}=\frac{1}{C_{1}}+\frac{1}{C_{2}}$
Magnetic fields			
17	Magnetic field	Force of field around magnets or current carrying conductor	
18	Magnetic flux density B	the magnetic field strength or force per unit length of conductor, unit tesla (T)	
19	Magnetic flux ϕ	Product of magnetic flux density (B) and area (A) normal to the magnetic field lines, unit weber $(W b)$ or tesla meter square $\left(T m^{2}\right) \quad \phi=B A \sin \theta$	
20	Force (F) in magnetic field	..on current carrying conductor $F=B I L \sin \theta$..on moving charge q with speed v $F=B q v \sin \theta$
21	Specific charge of electron e/m	$e / m=\frac{v}{B r}$	The ratio of charge to mass of an electron
22	Faraday`s law of EM induction	Emf produce is directly proportional to rate of change of magnetic flux linkage	
23	Hall probe	Use to find amount of magnetic field by creating hall voltage V_{H} in a conductor	

Unit 4: Electromagnetic Induction and alternating current (Topics from syllabus 23 and 24)
Electromagnetic Induction

1.	Magnetic field, B	Field around a magnet or current carrying conductor where other magnetic materials experience force, direction $N \rightarrow S$	
2.	Law of Magnets	Like poles repel each other	Unlike poles attract each other
3.	Right hand rule	magnetic field around a current carrying conductor, thumb pointing in the direction of conventional current, curved fingers direction of mag. Field	
4.	Helmholtz coils	Two identical flat coils, placed side by side, having same current in them, separated by distance equal to the radius produce mag. field in between them	
5.	Motor effect Fleming's LH rule	A current carrying conductor placed in a magnetic field at right angle, experience motor force at right angle to both. Use Fleming's left hand rule	
6.	Motor force	$\begin{gathered} F=\text { BILsin } \theta \\ \theta=90^{\circ} \rightarrow \text { max. motor force } \\ \theta=0 \rightarrow \text { zero motor force } \end{gathered}$	B - magnetic field strength in tesla (T) I - current in the conductor in ampere (A) L - length of conductor in mag. field (m) θ - angle between I and B
7.	Magnetic flux density	It is the magnetic field strength, represented by symbol B. Its unit is tesla (T)	
8.	Magnetic flux, Φ units weber (Wb) or tesla meter sq (Tm $\left.{ }^{2}\right)$	$\Phi=B A \sin \theta$ θ is the angle between B and normal to A	It is the product of magnetic flux density B and area A normal to the magnetic field lines
9.	Define weber	The SI unit of magnetic flux, equal to a flux that produces a electromotive force of one volt in a single turn of wire when the flux is uniformly reduced to zero in a period of one second	
10.	Change in magnetic flux linkage	product of change in magnetic flux $\Delta \Phi$ and number of turns N in a conductor	change in magnetic flux linkage $=N \Delta \Phi$
11.	Faraday's law of electromagnetic induction	The emf produced in proportional to the rate of change of magnetic flux linkage	$e m f=-N \frac{\Delta \Phi}{\Delta t} \text { or }-N \frac{d \Phi}{d t}$ use fleming's RH rule to find the direction of induce current or induce emf.
12.	Lenz's law	The direction of induced emf is such as that it opposes the motion that causing it.	
13.	Mutual Induction	Changing mag. field in one coil induces changing emf in the other coil. Eg transformer.	
14.	Transformer step up $N_{p}<N_{s}$ step down $N_{p}>N_{s}$	$\begin{gathered} P_{p}=P_{s} \\ \frac{V_{p}}{V_{s}}=\frac{N_{p}}{N_{s}}=\frac{I_{s}}{I_{p}} \end{gathered}$	V_{p} and V_{s} are voltages in primar and sec. N_{p} and N_{s} are turns in primary and sec. I_{p} and I_{s} are current in primary and sec. P_{p} and P_{s} are power of primary and sec.

Alternating Current

15.	a.c.	Alternating current - the mains supply of house electricity - 240 V in UAE	
16.	a.c. equations sinusoidal waves	$\begin{aligned} & I=I_{o} \sin \omega t \\ & V=V_{o} \sin \omega t \end{aligned}$	I_{o} max current, ω angular speed, I and V are the instantaneous current and voltage at time t
17	Peak values I_{o} an	effective values of voltage or current which will have same heating effect in a resistor that is produced by same value of direct current	
18.	rms values $V_{r m s} \text { or } I_{r m s}$		
19	rms values	$I_{r m s}=\frac{I_{o}}{\sqrt{2}}=0.7071$	$V_{r m s}=\frac{V_{o}}{\sqrt{2}}=0.7071 V_{o}$
20.	Why a	... so that the voltage can be increased before placing on power line to reduce the loss of energy due to high current	
21.	Diode	Electronic component that allows the current to pass only in one direction	
22.	Rectification	Process of changing a.c. to d.c. by using diodes. Full wave and half wave	
23.	Bridge rectifier	circuit that changes a.c. to d.c. using four diodes, capacitor and resistor	

Unit 5 Modern Physics (Topics from syllabus 25, 26 and 27)

Radioactivity			
28.	Radioactive emission	emission of radiation by certain unstable radioactive nuclei to become stable	
29.	Types of radiation	alpha particles (α), beta particles (β) and gamma rays (γ)	
30.	Alpha particles (α) emission	helium nucleus, +2 charge, stopped by paper, very short range in air, high ionization effect, deflected by electric and magnetic field, proton number decrease by 2, neutron number decrease by 2 and nucleon number decrease by 4 in parent nuclei	
31.	Beta particles (β) emission	high energy electrons, -1 charge, stopped by few mm thick aluminium sheet, weak ionization effect, deflected by electric and magnetic field, proton number increase by one, neutron number decrease by 1 and nucleon number stays the same in parent nuclei	
32.	Gamma rays (γ) emission	electromagnetic radiation, no charge, can only be reduced by thick lead sheet, weakest ionization effect, not deflected by electric or magnetic fields, no change in nucleon number	
33.	Spontaneous decay	radioactivity cannot be affected by external environmental factors for example temperature, pressure etc	
34.	Random decay	it is not possible to predict which nucleus in a sample will emit radiation but the probability that a nucleus will decay at any fixed time is constant	
35.	Decay curve	the graph of undecayed nuclei (y-axis) in a sample against time (x-axis)	
36.	Half life $t_{1 / 2}$	$A=-\frac{d N}{d t}=\lambda N$ N the number of undecayed nuclei, λ decay constant in $s^{-1}, y r^{-1}$, the activity (A) of an element	$t t$ is the time taken for the number of undecayed nuclei (N) to be reduced to half its original number $\left(N_{o}\right)$. This is also called the activity (A) of the material.
37.	Activity (A)	number of decays produced per unit time measured in becquerels (Bq) means one decay per second	
38.	Decay constant (λ)	Probability per unit time that a nucleus undergo decay	
39.	Radioactive decay equations	$N=N_{o} e^{-\lambda t}$	$A=A_{o} e^{-\lambda t}$
40.	Decay constant and half life	$t_{1 / 2}=$	$=\frac{0.693}{\lambda}$

